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Part 12:  Oscillations, Waves, and Sound 
 

Physics for Engineers & Scientists (Giancoli):  Chapters 11 & 12 

University Physics V1 (Openstax):  Chapters 15, 16 & 17 
 

Simple Harmonic Motion 
 

• Simple Harmonic Motion is a repetitive (periodic) state of motion that occurs when the 

magnitude of the restoring force is proportional to the displacement from equilibrium. 
 

One place this type of behavior occurs is when a mass is attached to a 

spring and allowed to slide across a frictionless surface. 
 

• If we pull the mass a distance A away from equilibrium, the Restoring Force of the spring 

will pull it back towards the equilibrium position. 
 

 

• The Amplitude (A) is the maximum displacement of the system from equilibrium. 
 

• The mass is released from rest in this case. v0 = 0. 
 

• The acceleration is:   𝑎 =  
𝐹

𝑚
=  

−𝑘𝑥

𝑚
=  

−𝑘𝐴

𝑚
 

• As will be shown later, the angular frequency (ω) of the system is:   𝜔 =  √
𝑘

𝑚
  

• The object will return to this exact state of the beginning of every period 
 

 𝑡 =  𝑛𝑇,    𝑓𝑜𝑟 𝑛 = 0, 1, 2, … 
 

• After a quarter of the period, the mass will have returned to its equilibrium position. 
 

 

• At equilibrium (x = 0) the net force is zero.  This means there is no longer any 

acceleration. 
 

• One it passes equilibrium it will begin to decelerate, making this the maximum speed. 
 

• We can calculate that speed using conservation of energy:    
 

𝐸𝐼𝑛𝑖𝑡 =  𝑈𝐸𝑙𝑎𝑠𝑡𝑖𝑐 =  
1

2
𝑘𝑥2 =   

1

2
𝑘𝐴2          𝐸𝐹𝑖𝑛𝑎𝑙 =  𝐾𝐸 =  

1

2
𝑚𝑣2 

 

𝐸𝐼𝑛𝑖𝑡 =  𝐸𝐹𝑖𝑛𝑎𝑙           
1

2
𝑘𝐴2 =  

1

2
𝑚𝑣2         𝑘𝐴2 =  𝑚𝑣2         

𝑘

𝑚
𝐴2 =  𝑣2         𝑣 =  √

𝑘

𝑚
𝐴 =  𝜔𝐴 

 

• The object will return to this state every period:   𝑡 = (𝑛 +
1

4
)𝑇,    𝑓𝑜𝑟 𝑛 = 0, 1, 2, … 

 

• After half of the period, the mass will have come to rest again. 
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• The amplitude has maximum magnitude again, this time on the negative side: x = -A. 
 

• The mass has come to rest again. v0 = 0. 
 

• The acceleration is:   𝑎 =  
𝐹

𝑚
=  

−𝑘𝑥

𝑚
=  

𝑘𝐴

𝑚
 

 

• The object will return to this state every period:   𝑡 = (𝑛 +
1

2
)𝑇,    𝑓𝑜𝑟 𝑛 = 0, 1, 2, … 

 

• After three quarters of the period, the mass will have returned to its equilibrium position 

again. 
 

 
 

• At equilibrium (x = 0) the net force is zero.  This means there is no longer any 

acceleration. 
 

• One it passes equilibrium it will begin to decelerate, making this the maximum speed. 
 

𝑣 =  √
𝑘

𝑚
𝐴 =  𝜔𝐴 

 

• The object will return to this state every period:   𝑡 = (𝑛 +
3

4
)𝑇,    𝑓𝑜𝑟 𝑛 = 0, 1, 2, … 

 

• After one full period, the object returns to its initial position and state and the cycle begins 

again. 
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• The energy of the system continually changes from potential energy to kinetic energy and 

back. 
 

• The velocity at any position can be calculated using conservation of energy:    
 

𝐸𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐸𝐼𝑛𝑖𝑡 =  
1

2
𝑘𝐴2          𝐸𝐹𝑖𝑛𝑎𝑙 =  𝑈𝐸𝑙𝑎𝑠𝑡𝑖𝑐 + 𝐾𝐸 =  

1

2
𝑘𝑥2 +  

1

2
𝑚𝑣2 

 

𝐸𝐼𝑛𝑖𝑡 =  𝐸𝐹𝑖𝑛𝑎𝑙           
1

2
𝑘𝐴2 =  

1

2
𝑚𝑣2 +  

1

2
𝑘𝑥2            

1

2
𝑘𝐴2 −  

1

2
𝑘𝑥2 =  

1

2
𝑚𝑣2 

 

 
1

2
𝑘(𝐴2 − 𝑥2) =   

1

2
𝑚𝑣2         𝑘(𝐴2 − 𝑥2) =  𝑚𝑣2         

𝑘

𝑚
(𝐴2 − 𝑥2) =  𝑣2         𝑣 =  √

𝑘

𝑚
(𝐴2 − 𝑥2) 

 

• General Solution 
 

𝐹 = 𝑚𝑎           −𝑘𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2            𝑚
𝑑2𝑥

𝑑𝑡2  +  𝑘𝑥 = 0           
𝑑2𝑥

𝑑𝑡2  +  
𝑘

𝑚
𝑥 = 0 

   

The solution to this well-known differential equation is of the form:   𝑥(𝑡) = 𝐶1 cos 𝜔𝑡 + 𝐶2 sin 𝜔𝑡 
 

The given initial position at t=0 is x=A.     𝑥(0) = 𝐶1 cos 0° + 𝐶2 sin 0° =  𝐶1 = 𝐴   
 

The given initial position is a maximum.   𝐶2 = 0 
 

𝑥(𝑡) = 𝐴 cos 𝜔𝑡         
𝑑2𝑥

𝑑𝑡2
=  

𝑑2

𝑑𝑡2
(𝐴 cos 𝜔𝑡)  =  

𝑑

𝑑𝑡
(−𝜔𝐴 sin 𝜔𝑡) =  −𝜔2𝐴 cos 𝜔𝑡  

 

Plug into the initial different equation: 
 

𝑑2𝑥

𝑑𝑡2  + 
𝑘

𝑚
𝑥 = 0         −𝜔2𝐴 cos 𝜔𝑡  +  

𝑘

𝑚
𝐴 cos 𝜔𝑡 = 0         (

𝑘

𝑚
− 𝜔2) 𝐴 cos 𝜔𝑡  = 0 

 

As A ≠ 0 and cos(ωt) ≠ 0 (at least it isn’t for all values of t): 
 

𝑘

𝑚
− 𝜔2  = 0          𝜔 =  √

𝑘

𝑚
         𝑇 =

2𝜋

𝜔
=  2𝜋√

𝑚

𝑘
          𝑓 =

𝜔

2𝜋
=

1

2𝜋
√

𝑘

𝑚
 

 

Which gives us our solution:   𝑥(𝑡) = 𝐴 cos 𝜔𝑡        with 𝜔 =  √
𝑘

𝑚
 

 

𝑣 =
𝑑𝑥

𝑑𝑡
=  

𝑑

𝑑𝑡
(𝐴 cos 𝜔𝑡)  =  −𝜔𝐴 sin 𝜔𝑡           𝑣𝑚𝑎𝑥 = 𝜔𝐴 =  √

𝑘

𝑚
𝐴 

 

 𝑎 =
𝑑2𝑥

𝑑𝑡2
=  

𝑑2

𝑑𝑡2
(𝐴 cos 𝜔𝑡)  =  −𝜔2𝐴 cos 𝜔𝑡            𝑎𝑚𝑎𝑥 = 𝜔2𝐴 =  

𝑘

𝑚
𝐴 

 

This solution is only valid when the initial position is a maximum.  

 

Simple Harmonic Motion vs. Uniform Circular Motion 
 

• The x- and y-components of uniform circular motion are in simple harmonic motion. 
   

• Simple harmonic motion can be viewed as a 1-dimensional view of uniform circular 

motion. 
 

• Uniform circular motion can be viewed as 2-dimensional simple harmonic motion 

where the two components are 90° out of phase. 
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Let the radius of the circle be the amplitude (A).  𝑟 = 𝐴 
 

There is no angular acceleration.   𝜃 = 𝜔𝑡 + 𝜃0 
 

𝑥 = 𝑟 cos 𝜃 = 𝐴 cos(𝜔𝑡 +  𝜃0) 
 

𝑣𝑥 = −𝑣 sin 𝜃 = −𝜔𝑟 sin(𝜔𝑡 +  𝜃0) =  −𝜔𝐴 sin(𝜔𝑡 +  𝜃0) 
 

𝑎𝑥 = −𝑎 cos 𝜃 = −
𝑣2

𝑟
cos(𝜔𝑡 +  𝜃0) = −

(𝜔𝑟)2

𝑟
cos(𝜔𝑡 +  𝜃0)  

 

𝑎𝑥 = −𝜔2𝑟 cos(𝜔𝑡 + 𝜃0) =  −𝜔2𝐴 cos(𝜔𝑡 +  𝜃0) 

 

Example: Military aircraft and pilots are tested to ensure they can withstand accelerations of 9g 

(88.2 m/s2).  To ensure that communication equipment can withstand these g-forces it is placed on an 

oscillating table that shifts back and forth in simple harmonic motion at a frequency of 5.25 Hz.  To 

ensure that the equipment is tested at a maximum acceleration of 9g, what amplitude is needed? 

 

𝑎𝑚𝑎𝑥  =  𝜔2𝐴 = (2𝜋𝑓)2𝐴 = 4𝜋2𝑓2𝐴 = 9𝑔 

 

𝐴 =  
9𝑔

4𝜋2𝑓2
=  

9 (9.80
𝑚
𝑠2)

4𝜋2(5.25 𝐻𝑧)2
= 8.11 𝑐𝑚 

 

Example:  A 50.0 kg block is attached to a spring (k = 450 N/m), which in turn is attached to a wall.  

The block is at rest when it is struck by a bullet with a trajectory that would pass straight down the 

center of the spring.  The bullet becomes lodged in the block, and sends it into simple harmonic 

motion with frequency of 0.4765 Hz and amplitude 50.5 cm.  Determine the mass and the initial 

velocity of the bullet. 
 

 
 

𝜔 =  √
𝑘

𝑚+𝑀
= 2𝜋𝑓          

𝑘

𝑚+𝑀
=  4𝜋2𝑓2          𝑚 + 𝑀 =

𝑘

4𝜋2𝑓2 

 

𝑚 =
𝑘

4𝜋2𝑓2
− 𝑀 =  

(450
𝑁
𝑚

)

4𝜋2(0.4765)2
− 50.0 𝑘𝑔 = 0.20269 𝑘𝑔 

 

Conservation of momentum relates the bullet velocity (v0) to V. 

 

𝑚𝑣0 =  (𝑚 + 𝑀)𝑉          𝑣0 =  (1 +
𝑀

𝑚
) 𝑉 
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Conservation of energy (after the collision) relates V to A. 

 

Or… 

 

The velocity of the block and bullet (V) right after the collision occurs at equilibrium.   

That means V is the maximum velocity. 

 

𝑉 = 𝑣𝑚𝑎𝑥 =  𝜔𝐴 = 2𝜋𝑓𝐴  
 

𝑣0 =  (1 +
𝑀

𝑚
) 𝑉 =  (1 +

𝑀

𝑚
) 2𝜋𝑓𝐴 =  (1 +

50.0 𝑘𝑔

0.20269 𝑘𝑔
) 2𝜋(0.4765 Hz)(0.505 𝑚) =  374

𝑚

𝑠
 

 

Pendulum 
 

• We will treat this as 1-dimensional simple harmonic motion along the arc made by the 

hanging mass. 

   

 

Weight (W) and Tension (T) act on the hanging mass. 
 

One component of the weight (Wy) cancels out the 

tension. 
 

The other component of the weight (Wx) acts as the 

restoring force. 

If we can find k, then we can use 𝜔 =  √
𝑘

𝑚
 

 

𝑘 =  −
𝐹

𝑥
=  −

𝑊𝑥

−𝐿𝜃
=  

𝑚𝑔 sin 𝜃

𝐿𝜃
 ≈

𝑚𝑔𝜃

𝐿𝜃
=  

𝑚𝑔

𝐿
 

 

In the small angle approximation, sin θ ≈ θ 
 

𝜔 =  √
𝑚𝑔

𝐿𝑚
=  √

𝑔

𝐿
        𝑓 =  

𝜔

2𝜋
=  

1

2𝜋
√

𝑔

𝐿
          𝑇 =

1

𝑓
= 2𝜋√

𝐿

𝑔
   

 

• The period/frequency of a pendulum is independent of mass.   
 

Example:  The pendulum in Big Ben has a 299 kg bob and a period of 2 seconds.  What is the length 

of the arm of this pendulum? 

 

𝑇 = 2𝜋√
𝐿

𝑔
          

𝑇

2𝜋
= √

𝐿

𝑔
          

𝑇2

4𝜋2 =
𝐿

𝑔
          𝐿 =  

𝑔𝑇2

4𝜋2 =
(9.80

𝑚

𝑠2)(2.00 𝑠)2

4𝜋2 = 99.3 𝑐𝑚 

 

Example:  Wilson Hall, the picturesque administrative building at Fermilab, used to have a rather 

slow-moving pendulum hanging from the very top of the building, 16 floors high (roughly 160 ft.).  

How long does it take this pendulum to make one complete cycle? 

 

𝐿 = (160 𝑓𝑡. )
(0.3048 𝑚)

(1 𝑓𝑡. )
= 48.768 𝑚 
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𝑇 = 2𝜋√
𝐿

𝑔
=  2𝜋√

48.768 𝑚

9.80
𝑚
𝑠2

= 14.0 𝑠 

 

Damping, Driving, and Resonance 
 

• Springs are useful for absorbing impacts. 

 

• Choosing the spring constant allows smaller deceleration to occur over a larger distance, 

reducing the force of impact. 

 

• Springs absorb and release a portion of the impact energy, which can lead to unwanted 

harmonic motion. 

 

• In Damped Harmonic Motion, energy is steadily removed from the system resulting in 

decreasing amplitude. 

 

Cars are suspended on springs so that when you drive over a bump the 

deceleration is gentler.  If the absorbed collision energy is not dissipated by 

damping (shock absorbers), then your vehicle would continue to bounce. 

 

• In Driven Harmonic Motion, energy is added from an outside source.   

 

• How a driven harmonic oscillator behaves is dependent upon both the frequency of 

the driving force and the natural frequency of the oscillator. 

 

• Resonance occurs when the driving frequency and the oscillator frequency match.  

When this happen, energy is continually added to the system. 

 

When pushing a child in a swing, timing your pushes to the timing of the swing results in the child 

swinging higher and higher (ever increasing amplitude) even as the friction in the system (damping) 

causes their swinging to slow down and lose height. 

 

The Wave Equation and its Solutions 
 

• In some instances, Newton’s laws lead to a partial differential equation known as the Wave 

Equation. 

 
𝜕2𝐷

𝜕𝑡2
−  𝑣2

𝜕2𝐷

𝜕𝑥2
= 0 

 

D = Displacement as measured from equilibrium. 

The constant (v2) is the square of the velocity of the wave. 
 

• The solutions to this equation are travelling waves, either a sine function, a cosine function, 

or a combination of the two depending upon the initial phase. 
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𝐷 = 𝐴 sin(𝑘𝑥 − 𝜔𝑡) = 𝐴 sin [2𝜋 (
𝑥

𝜆
− 𝑓𝑡)]  = 𝐴 sin [2𝜋 (

𝑥

𝜆
−

𝑡

𝑇
)]  = 𝐴 sin [

2𝜋

𝜆
(𝑥 − 𝑣𝑡)]  

 

 
 

• The Wave Number (k) is the spatial frequency of the wave (cycles per unit distance). 
 

𝑘 =  
2𝜋

𝜆
          𝑣 =  

𝜔

𝑘
=  

2𝜋𝑓
2𝜋

𝜆

= 𝑓𝜆 =  
𝜆

𝑇
 

 

• The velocity (v) is determined by the properties of the medium through which the 

wave moves. 
 

• The frequency (f), angular frequency (ω), period (T), wavelength (λ), and wave 

number (k) are all inter-related and determined by whatever excitation created the 

wave. 
 

• Travelling waves obey Superposition, meaning that the displacements of two different 

waves simply add together, superimposing one wave on top of the other. 
 

• When waves of the same frequency combine (superimpose), it is called Interference and can 

create a resultant wave of greater (Constructive Interference) or lower (Destructive 

Interference) amplitude.   
 

• Driven travelling waves may also experience Resonance. 
 

• Travelling waves are Longitudinal if the movement of particles making the wave is 

parallel/anti-parallel with the direction of the wave’s motion. 
 

• Travelling waves are Transverse if the movement of particles making the wave is 

perpendicular to the direction of the wave’s motion. 

• Travelling waves often reflect back when they encounter boundaries and may invert (180° 

phase shift) upon reflection. 

 

Example: The amplitude of an ocean swell is 1.50 m with crests separated 33.8 m.  A wave crest 

strikes the beach once every 5.70 s.  Determine (A) the frequency of the waves, (B) the speed of the 

waves, and (C) the wave number. 
 

A = 1.50 m           λ = 33.8 m          T = 5.70 s. 
 

𝑓 =  
1

𝑇
=  

1

5.70𝑠
= 0.175 𝐻𝑧          𝑣 =  

𝜆

𝑇
=  

33.8 𝑚

5.70 𝑠
= 5.93

𝑚

𝑠
          𝑘 =  

2𝜋

𝜆
=  

2𝜋

33.8 𝑚
= 0.186 𝑚−1 

 

Transverse Waves on Strings    
 

• The velocity of waves on a string are given by:       𝑣 =  √
𝐹𝑇

𝜇
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• FT is the tension in the string (so as not to be confused with the period T). 
 

• µ is the mass per unit length of the string. 
 

The length of a string determines the wavelengths allowed.  If we assume λ is 

fixed, then the frequency of the wave increases with the velocity.     f = v/λ. 
 

• Increasing the tension (typically by turning a tuning nut) increases the velocity of the 

waves, creating higher pitched notes. 
 

• Thicker strings have higher values of µ, and higher values of µ lead to lower 

velocities and lower pitched notes.   
 

• Waves travelling down a string will reflect back from the ends of the string interfering with 

the original waves.   
 

• The majority of frequencies experience destructive interference.   
 

• Only a few specific modes of vibration (also known as Harmonics) experience 

constructive interference.  In these cases, the superposition of the original wave and 

its reflections results in a Standing Wave, a wave that oscillates in time at amplitudes 

that are fixed in space. 
 

 
 

• In each mode, certain positions called on the string Nodes have zero amplitude (no 

vibration).  As the ends of strings are typically held in place (as the string is under 

tension), these must become nodes.  
 

• Certain other positions called Anti-Nodes are vibrating with the maximum amplitude. 
 

All modes begin vibrating when a string is plucked.  Normally the amplitudes of these 

various modes fall as you move to higher harmonics (making the higher modes significantly 

quieter).  The various amplitudes are also affected by how and where a string is struck or 

plucked.  The sum total of all of these modes produces the sound that you hear. 
 

• Each mode of vibration (n) occurs at a specific wavelength (and frequency) related to 

the string’s length (L).     
  

𝜆𝑛  =
2𝐿

𝑛
          𝑓𝑛 =

𝑣0

𝜆𝑛
=

𝑛𝑣0

2𝐿
          #𝑁𝑜𝑑𝑒𝑠 = 𝑛 + 1         #𝐴𝑛𝑡𝑖-𝑁𝑜𝑑𝑒𝑠 = 𝑛 

 

 

• The first harmonic or fundamental mode (n = 1) is the simplest and usually 

the loudest tone heard (largest amplitude).  It has a node at each end, and one 

anti-node in between. 
 

 
 

𝐿 =
1

2
𝜆1          𝜆1 = 2𝐿          𝑓1 =

𝑣0

𝜆1
=

𝑣0

2𝐿
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• The second harmonic (n = 2) has a node at each end, another node in the 

middle, and two anti-nodes (halfway between each adjacent pair of nodes). 
 

 
 

𝜆2 = 𝐿          𝑓2 =
𝑣0

𝜆2
=

𝑣0

𝐿
 

 

• The third harmonic (n = 3) has a node at each end, two more nodes evenly 

spaced in between, and three anti-nodes (halfway between each adjacent pair 

of nodes). 
 

 
 

𝐿 =
3

2
𝜆3          𝜆3 =

2𝐿

3
          𝑓3 =

𝑣0

𝜆3
=

3𝑣0

2𝐿
 

 

• The fourth harmonic (n = 4) has 5 nodes and 4 anti-nodes. 
 

 
 

𝐿 = 2𝜆4          𝜆4 =
𝐿

2
          𝑓4 =

𝑣0

𝜆4
=

2𝑣0

𝐿
 

 

Sometimes a guitarist will play a “harmonic” by holding their finger gently on the string without 

pressing it against the fret board (often to tune).  This forces a node at that position, suppressing 

all modes of vibration that don’t have this node (including the fundamental).  If done at the 5th fret 

sounds are dominated by the 4th harmonic mode.  The 7th fret gives you the 3rd harmonic mode, 

and the 12th fret gives you the second. 
 

• The fifth harmonic (n = 5) has 6 nodes and 5 anti-nodes. 
 

 
 

𝐿 =
5

2
𝜆5          𝜆5 =

2𝐿

5
          𝑓5 =

𝑣0

𝜆5
=

5𝑣0

2𝐿
 

 

When the envelopes of the first five harmonics of a string are 

superimposed, it makes a rather striking image. 
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Sound Waves    
 

• Sound is a pressure wave (also called a compression wave). 

• The velocity of sound waves in liquid or gas:       𝑣𝑠𝑜𝑢𝑛𝑑 =  √
𝛽

𝜌
 

• β is the bulk modulus and ρ is the mass density of the medium. 
 

• The speed of sound in air varies with temperature.  At 20°C:   𝑣𝑠𝑜𝑢𝑛𝑑 =  343
𝑚

𝑠
 

 

• The speed of sound in water depends on pressure (depth), temperature, and salinity.  

On average the speed of sound is 1560 m/s in saltwater and 1435 m/s in freshwater.  
 

• In liquids and gases, sound is strictly a longitudinal wave with alternating bands of 

high pressure (crests) and low pressure (troughs).   
 

• The velocity of sound waves in a solid:       𝑣𝑠𝑜𝑢𝑛𝑑 =  √
𝑌

𝜌
 

• Y is the Young’s modulus and ρ is the mass density of the medium. 
 

• The speed of sound in iron is roughly 5130 m/s. 
 

• In solids sound can propagate as either a longitudinal or a transverse wave.  The 

transverse waves are alternating shear stress at a right angle to the propagation, and 

the longitudinal waves are alternating bands of high pressure (crests) and low 

pressure (troughs). 
 

Seismic activity (earthquakes) generates both (primary) longitudinal waves (P-waves) and 

(secondary) transverse waves (S-waves).  The longitudinal waves travel at roughly 5000 m/s (in 

granite) while the slower transverse waves travel at only 3000 m/s.  Typically the transverse waves 

do greater damage as they are typically created with larger amplitudes. 

 

Example: As a plane flies overhead you notice that the sound of the engines appears to be coming 

from a spot 20.0° behind the aircraft.  How fast is the airplane moving? 
 

 

 

 

 

 

𝑣𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒 =  𝑣𝑠𝑜𝑢𝑛𝑑 sin 𝜃 =  (343
𝑚

𝑠
) sin 20.0° = 117

𝑚

𝑠
 

 

117 m/s is about 262 mph.   

At altitudes below 10,000 ft., aircraft are limited to a 

maximum speed of 250 knots (288 mph).   
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Longitudinal Waves in a Pipe    
 

• A closed end of a pipe creates a node while an open end creates an anti-node. 
 

• Each mode of vibration (n) occurs at a specific wavelength (and frequency) related to the 

pipe’s length (L), depending upon whether one end or both ends are open. 
 

• Harmonics in pipe with two open ends:  
  

𝜆𝑛  =
2𝐿

𝑛
          𝑓𝑛 =

𝑣𝑠𝑜𝑢𝑛𝑑

𝜆𝑛
=

𝑛𝑣𝑠𝑜𝑢𝑛𝑑

2𝐿
          #𝑁𝑜𝑑𝑒𝑠 = 𝑛         #𝐴𝑛𝑡𝑖-𝑁𝑜𝑑𝑒𝑠 = 𝑛 + 1 

 

 

• The first harmonic or fundamental mode (n = 1) is the simplest and usually the 

loudest tone heard (largest amplitude).  It has an anti-node at each end, and one node 

in between. 
 

 
 

𝐿 =
1

2
𝜆1          𝜆1 = 2𝐿          𝑓1 =

𝑣𝑠𝑜𝑢𝑛𝑑

𝜆1
=

𝑣𝑠𝑜𝑢𝑛𝑑

2𝐿
 

 
 

• The second harmonic (n = 2) has an anti-node at each end, another anti-node in the 

middle, and two nodes (halfway between each adjacent pair of anti-nodes). 
 

 
 

𝜆2 = 𝐿          𝑓2 =
𝑣𝑠𝑜𝑢𝑛𝑑

𝜆2
=

𝑣𝑠𝑜𝑢𝑛𝑑

𝐿
 

 
 

• The third harmonic (n = 3) has an anti-node at each end, two more anti-nodes evenly 

spaced in between, and three nodes (halfway between each adjacent pair of anti-

nodes). 
 

 
 

𝐿 =
3

2
𝜆3          𝜆3 =

2𝐿

3
          𝑓3 =

𝑣𝑠𝑜𝑢𝑛𝑑

𝜆3
=

3𝑣𝑠𝑜𝑢𝑛𝑑

2𝐿
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• Harmonics in pipe with one end open and one end closed:  
  

𝜆𝑛  =
4𝐿

2𝑛−1
          𝑓𝑛 =

𝑣𝑠𝑜𝑢𝑛𝑑

𝜆𝑛
=

(2𝑛−1)𝑣𝑠𝑜𝑢𝑛𝑑

4𝐿
          #𝑁𝑜𝑑𝑒𝑠 = 𝑛         #𝐴𝑛𝑡𝑖-𝑁𝑜𝑑𝑒𝑠 = 𝑛 

 

 

• The first harmonic or fundamental mode (n = 1) is the simplest and usually the 

loudest tone heard (largest amplitude).  It has a node at one end and an anti-node at 

the other. 
 

 
 

𝐿 =
1

4
𝜆1          𝜆1 = 4𝐿          𝑓1 =

𝑣𝑠𝑜𝑢𝑛𝑑

𝜆1
=

𝑣𝑠𝑜𝑢𝑛𝑑

4𝐿
 

 
 

• The second harmonic (n = 2) has a node and an anti-nodes at either end, with another 

node and anti-node in the middle. 
 

 
 

𝐿 =
3

4
𝜆2          𝜆2 =

4

3
𝐿          𝑓2 =

𝑣𝑠𝑜𝑢𝑛𝑑

𝜆2
=

3𝑣𝑠𝑜𝑢𝑛𝑑

4𝐿
 

 
 

• The third harmonic (n = 3) has three nodes and three anti-nodes. 
 

 
 

𝐿 =
5

4
𝜆3          𝜆3 =

4𝐿

5
          𝑓3 =

𝑣𝑠𝑜𝑢𝑛𝑑

𝜆3
=

5𝑣𝑠𝑜𝑢𝑛𝑑

4𝐿
 

 
 

Sometimes musicians playing horns will cover the opening, providing a drop in 

frequency (one octave) and a change in the harmonic frequencies. 

 

Example: Two pipes are the same length.  The first pipe has both ends open, and the second has one 

closed end.  If the both pipes have their 4th harmonic excited, which pipe produces the higher pitch? 
 

1st Pipe:     𝑓𝑛 =
𝑛𝑣𝑠𝑜𝑢𝑛𝑑

2𝐿
=  

4𝑣𝑠𝑜𝑢𝑛𝑑

2𝐿
= 2

𝑣𝑠𝑜𝑢𝑛𝑑

𝐿
 

 

2nd Pipe:     𝑓𝑛 =
(2𝑛−1)𝑣𝑠𝑜𝑢𝑛𝑑

4𝐿
  =  

[2(4)−1]𝑣𝑠𝑜𝑢𝑛𝑑

4𝐿
=

7

4

𝑣𝑠𝑜𝑢𝑛𝑑

𝐿
 

 

As 2 >
7

4
, the 1st pipe produces the higher pitch. 
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Intensity (I):     𝐼 =  
𝑃

𝐴
 

 

• The Intensity (I) of a wave is the power per unit area carried by the wave.   Units: 
𝑊

𝑚2  
 

• Typically a time averaged value is used for power. 
 

• As sound tends to radiate spherically, the intensity will drop with the square of the radius. 
 

Sound Levels (β)       𝛽(𝑑𝐵) = 10𝑙𝑜𝑔 (
𝐼

𝐼0
)   

 

• Normal human hearing is sensitive to frequencies from 20 Hz to 20 kHz, but is most 

sensitive to sounds between 1 kHz and 4 kHz. 
 

• The minimum intensity that we can hear is 𝐼0 = 10−12 𝑊

𝑚2 
 

• As human hearing is sensitive to a wide range of intensity, a log scale is used for sound 

levels. 

𝛽(𝑑𝐵) = 10𝑙𝑜𝑔 (
𝐼

𝐼0
) 

 

• Sound below 75 dB typically does no damage to hearing. 
 

• Breathing (10 dB) is barely audible. 
 

• Whispering or a Quiet Rural Area (30 dB) is very quiet. 
 

• Conversation in restaurant, office background music, or an air conditioner at 100 ft. 

(60 dB) is fairly quiet. 
 

• Vacuum Cleaner (70 dB) 
 

• Intense sounds (85 dB and above) can damage a person’s ability to hear depending upon the 

duration of exposure. 
 

• 8 hours of exposure to sounds over 90 dB can possibly cause damage.  This includes 

the sound of a power mower (96 dB), being 25 ft. from a motorcycle (90 dB), or 

being 1 nautical mile (6080 ft.) from a landing commercial aircraft (97 dB) 
 

• Sounds at the average human pain threshold of 110 dB such as a car horn at 1m (110 

dB) or live music at a rock concert (108 to 114 dB) can cause damage in minutes. 
 

• Sounds at 120dB (such as a chainsaw) are painful and can damage an ear after only 

seconds. 
 

• Sounds at 150 dB (such a jet taking off at 25 meters) can rupture eardrums.   

 

Example: The sound technician in a recording studio sets the sound level of the backing vocals to be 

3.00 dB lower than the lead vocals.  Determine the ratio of the intensity of the background vocals to 

that of the lead vocals.   
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𝛽𝐵 =  𝛽𝐿 − 3.00          10𝑙𝑜𝑔 (
𝐼𝐵

𝐼0
) =  10𝑙𝑜𝑔 (

𝐼𝐿

𝐼0
) − 3.00          𝑙𝑜𝑔 (

𝐼𝐵

𝐼0
) =  𝑙𝑜𝑔 (

𝐼𝐿

𝐼0
) − 0.300 

 

10
𝑙𝑜𝑔(

𝐼𝐵
𝐼0

)
=  10

𝑙𝑜𝑔(
𝐼𝐿
𝐼0

)−0.300
= 10

𝑙𝑜𝑔(
𝐼𝐿
𝐼0

)
10−0.300 =  

𝐼𝐿

𝐼0
 (0.501) 

 
𝐼𝐵

𝐼0
= 0.501

𝐼𝐿

𝐼0
          

𝐼𝐵

𝐼𝐿
=  0.501 

 

 

The Doppler Effect 
 

• Moving sources of sound compress the wavelengths in front of them and stretch the 

wavelengths behind them.  A stationary observer will hear a different frequency than that 

emitted by the source. 
 

• A similar effect occurs when the observer is moving. 
 

 

𝑓′ = 𝑓 (
𝑣𝑠𝑜𝑢𝑛𝑑  ±  𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟

𝑣𝑠𝑜𝑢𝑛𝑑  ∓  𝑣𝑠𝑜𝑢𝑟𝑐𝑒
)  

 

𝑓′ is the frequency heard by the observer. 
 

𝑓 is the frequency emitted by the source. 
 

𝑣𝑠𝑜𝑢𝑛𝑑 is the speed of sound in air (343 m/s). 
 

𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 is the velocity of the observer. 
 

𝑣𝑠𝑜𝑢𝑟𝑐𝑒 is the velocity of the source. 
 

The top sign is used when the velocity of the 

observer (source) is directed towards the source 

(observer). 

 

Or, if you prefer, if you always place the source on 

the right and the observer on the left, then us a 

positive sign when moving right and a negative sign 

when moving left. 

 

Example: A car is moving down a street at 13.7 m/s when the driver hears the siren of an ambulance 

approaching from behind at 22.3 m/s.  The frequency of the horn on the ambulance is 960 Hz.  (A) 

What frequency does the driver of the car hear as the ambulance approaches? And (B) What 

frequency does the driver of the car hear after being passed by the ambulance? 
 

 
 

𝑓′ = 𝑓 (
𝑣𝑠𝑜𝑢𝑛𝑑  ±  𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟

𝑣𝑠𝑜𝑢𝑛𝑑  ∓  𝑣𝑠𝑜𝑢𝑟𝑐𝑒
) =  (960 𝐻𝑧) (

343
𝑚
𝑠 − 13.7

𝑚
𝑠

343
𝑚
𝑠 − 22.3

𝑚
𝑠

) = 986 𝐻𝑧 
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𝑓′ = 𝑓 (
𝑣𝑠𝑜𝑢𝑛𝑑  ±  𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟

𝑣𝑠𝑜𝑢𝑛𝑑  ∓  𝑣𝑠𝑜𝑢𝑟𝑐𝑒
) =  (960 𝐻𝑧) (

343
𝑚
𝑠

+ 13.7
𝑚
𝑠

343
𝑚
𝑠

+ 22.3
𝑚
𝑠

) = 937 𝐻𝑧 

Example: A bat is flying at 4.50 m/s towards an insect the bat intends to feed upon.  The insect is 

moving towards the bat at 3.00 m/s.  The bat chirps at a frequency of 100 kHz.  Determine the 

frequency of the reflected sound heard by the bat. 
 

Let 𝑓′ be the frequency observed by the insect.  As this is what reflects, it becomes 

the source for the return trip.  We shall call 𝑓′′ the frequency heard by the bat. 
 

𝑓′ = 𝑓 (
𝑣𝑠𝑜𝑢𝑛𝑑  ± 𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟

𝑣𝑠𝑜𝑢𝑛𝑑  ∓  𝑣𝑠𝑜𝑢𝑟𝑐𝑒
) =  𝑓 (

𝑣𝑠𝑜𝑢𝑛𝑑 +  𝑣𝑖𝑛𝑠𝑒𝑐𝑡

𝑣𝑠𝑜𝑢𝑛𝑑 − 𝑣𝑏𝑎𝑡
) 

 

𝑓′′ = 𝑓′ (
𝑣𝑠𝑜𝑢𝑛𝑑  ±  𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟

𝑣𝑠𝑜𝑢𝑛𝑑  ∓ 𝑣𝑠𝑜𝑢𝑟𝑐𝑒
) =  𝑓′ (

𝑣𝑠𝑜𝑢𝑛𝑑 +  𝑣𝑏𝑎𝑡

𝑣𝑠𝑜𝑢𝑛𝑑 − 𝑣𝑖𝑛𝑠𝑒𝑐𝑡
)   =  𝑓 (

𝑣𝑠𝑜𝑢𝑛𝑑 +  𝑣𝑖𝑛𝑠𝑒𝑐𝑡

𝑣𝑠𝑜𝑢𝑛𝑑 −  𝑣𝑏𝑎𝑡
) (

𝑣𝑠𝑜𝑢𝑛𝑑 +  𝑣𝑏𝑎𝑡

𝑣𝑠𝑜𝑢𝑛𝑑 −  𝑣𝑖𝑛𝑠𝑒𝑐𝑡
)   

 

𝑓′′ =  (100 𝑘𝐻𝑧) (
343

𝑚
𝑠

 +  3.00
𝑚
𝑠

343
𝑚
𝑠  −  4.50

𝑚
𝑠

) (
343

𝑚
𝑠

 +  4.50
𝑚
𝑠

343
𝑚
𝑠  −  3.00

𝑚
𝑠

) =  104 𝑘𝐻𝑧 

 

 


